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Abstract 
 
 
       We analyze results of 15 global climate simulations contributed to the Coupled 

Model Intercomparison Project (CMIP). Focusing on the western U.S., we consider both 
present climate simulations and predicted responses to increasing atmospheric CO2. 

       The models vary in their ability to predict the present climate. Over the western U.S., 

a few models produce a seasonal cycle for spatially-averaged temperature and/or 
precipitation in good agreement with observational data. Other models tend to over-

predict precipitation in the winter or exaggerate the amplitude of the seasonal cycle of 
temperature. The models also differ in their ability to reproduce the spatial patterns of 

temperature and precipitation in the U.S. 

       Considering the monthly mean precipitation responses to doubled atmospheric CO2, 
averaged over the western U.S., we find some models predict increases while others 

predict decreases. The predicted temperature response, on the other hand, is invariably 
positive over this region; however, for each month, the range of values given by the 

different models is large compared to the mean model response. 

       We look for possible relationships between the models’ temperature and 
precipitation responses to doubled CO2 concentration and their ability to simulate some 

aspects of the present climate. We find that these relationships are weak, at best. The 

precipitation response over the western U.S. in DJF and the precipitation response over 
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the mid- and tropical latitudes seem to be correlated with the RMS error in simulated 

present-day precipitation, also calculated over the mid- and tropical latitudes. However, 
considering only the responses of the models with the smallest RMS errors does not 

provide a different estimate of the precipitation response to a doubled CO2 concentration, 
because even among the most accurate models, the range of model responses is so large. 

For temperature, we find that models that have smaller RMS errors in present-climate 

temperature in the North Eastern Pacific region predict a higher temperature response in 
the western U.S. than the models with larger errors. A similar relation exists between the 

temperature response over Europe in DJF and the RMS error calculated over the 
Northern Atlantic. 

 

 

Introduction 
 

       When information on future climate change is sought, at spatial scales not currently 

resolved by global climate models, “downscaling” techniques are typically used. The 
downscaling can be performed dynamically, using a nested regional climate model, or 

statistically, using empirical relationships developed from observations of the present 
climate. The results of both these downscaling approaches depend strongly on the large-

scale driving fields obtained from the global climate model. Thus, an important 

component of the uncertainty in predicted regional climate changes is the range of 
climate changes predicted by global climate models in relevant geographical regions. 

       In this paper, we examine simulations of the western continental United States 
performed with global climate models, with the goals of assessing the predicted climate 

responses to increased atmospheric CO2, as well as the inter-model variance in these 

predicted responses. Our focus on the western U.S. is motivated by the fact that this 
region may be unusually sensitive to climate change. Increases in temperature or other 

climate perturbations could have a large impact on local resources such as water 
availability. Predicting changes in climate and their consequences is therefore of great 

economical importance. We are also interested in the range of climate responses to 



3 

increased CO2 over the western U.S., with the prospect of running a regional climate 

model over this region. 
       To determine the degree to which models agree, we compute the ratio of the mean 

response of the models to the standard deviation of their responses. This ratio is in some 
sense a measure of the signal to noise in predicted climate changes. We will show, for 

example, that the inter-model standard deviation in predicted precipitation changes in the 

western U.S. exceeds the model-mean predicted precipitation response; this leads to the 
conclusion that we cannot confidently predict even the sign of the precipitation response 

in this region. 
       As a first step, we assess the inter-model means, standard deviations, and “signal to 

noise ratios” in predicted climate changes under the assumption that all the models 

considered are equally credible. Next, we attempt to obtain more precise estimates of 
these quantities by considering only models that can simulate today’s climate with 

relative accuracy. The more precise estimates could be interpreted as also being more 

accurate under the assumption that models that reproduce today’s climate more 
accurately make more accurate predictions of future climate. (This assumption is implicit 

in the widely-accepted approach of evaluating climate models by comparing them to 
observations of the present climate.) If we believe that models that more accurately 

reproduce today’s climate are inherently more credible than other models, and if these 

more accurate models give systematically different predicted responses to increased 
atmospheric CO2 than less accurate models, we could obtain more accurate estimates of 

the mean and variance in predicted climate responses. 
       We therefore turn to searching for relationships between predicted precipitation and 

surface temperature responses and various measures of how well models reproduce 

observations of today’s climate. For the most part we find no significant relationships; 
that is we find scant evidence that models that are relatively good at reproducing aspects 

of today’s climate predict systematically different responses to increased atmospheric 
CO2 compared to other models. We also find no evidence that models with a better ability 

to simulate aspects of today’s climate have a narrower range of temperature or 

precipitation responses. Thus, in general, we do not obtain significantly different 
estimates of model-mean predicted responses, or of the inter-model variance in predicted 
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responses (which is a measure of uncertainty in the responses), by considering only 

models that reproduce aspects of today’s climate relatively well. 
 

Data Sources and Methods 
 
       Our analysis is based on results of 15 global coupled ocean-atmosphere general 

circulation models submitted to the Coupled Model Intercomparison Project, Phase 2 

(CMIP2) (Table 1) [1]. The CMIP database includes coupled GCM control runs in which 
CO2, solar brightness and other external climatic forcing are kept constant. Individual 

CMIP control runs use different values of solar "constant", ranging from 1354 to 1370 W 

m-2 and different values of CO2 concentrations, ranging from pre-industrial values (290 
ppm) to near-present climate values (345 ppm). CMIP also collected output from the 

same set of models in which CO2 increases at the rate of 1% per year. For our analysis, 
we use both the control run output and the increasing-CO2 simulations. For the analysis 

of present climate, we take results from a 20-year time window centered on the 71st year 

of each control simulation. To estimate the response to doubled CO2 concentration, we 
subtract these results of the control simulation from results of the increasing-CO2 

simulation from the same time window. The 71st year corresponds to the time of doubling 
of the atmospheric CO2 concentration. Before subtraction, the data were regridded to a 

common grid of 2.5 degrees by 2.5 degrees. 
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Model 
 

Institution/Country 
Control Run 
CO2 [ppmv] 

Atmospheric 
Resolution 

Ocean 
Resolution 

GFDL_R15_a GFDL/USA 360 
R15 (4.5 x 7.5) 

L9 

4.5 x 3.7 

L12 

GOALS LASG/China 345 
R15 (4.5 x 7.5) 

L9 
4.0 x 5.0 

L20 

ECHAM3/LSG ECMWF/UK 345 
T21 (5.6 x 5.6) 

L19 

4.0 x 4.0 

L11 

CCSR/NIES Univ. of Tokyo/Japan 345 
T21 (5.6 x 5.6) 

L20 

2.8 x 2.8 

L17 

GISS2 NASA-GISSS/USA 315 4.0 x 5.0 L9 
4.0 x 5.0 

L13 

MRI1 
Meteorological Res. 

Inst./Japan 
345 4.0 x 5.0 L15 

2.0 x 2.5 

L21 

IPSL-CM2  IPSL/France 320 5.6 x 3.8 L15 
2.0 x 2.0 

L31 

BMRCb      BMRC/Australia 330 
R21 (3.2 x 5.6) 

L17 
3.2 x 5.6 

L12 

CSIRO Mk2  CSIRO/Australia 330 
R21 (3.2 x 5.6) 

L9 
3.2 x 5.6 

L21 

ARPEGE/OPA2    CERFACS/France 353 
T31 (3.9 x 3.9) 

L19 

2.0 x 2.0 

L31 

CGCM1 CCCMA/Canada 330 
T32 (3.8 x 3.8) 

L10 

1.8 x 1.8 

L29 

HadCM3 UKMO/UK 289.6 2.5 x 3.75 L19 
1.25 x 1.25 

L20 

HadCM2 UKMO/UK 322.6 2.5 x 3.75 L19 
2.5 x 3.75 

L20 

CSM1.0 NCAR/USA 355 T42 (2.8 x 2.8) 2.0 x 2.4 
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L18 L45 

DOE PCM NCAR 355 
T42 (2.8 x 2.8) 

L18 
0.67 x 0.67 

L32 

 
Table 1: List of the 15 CMIP models with their control run CO2 concentration, 

atmospheric resolution and ocean resolution. Models are listed in order of number of 

horizontal grid cells in the atmospheric component. 

 
       In order to assess the ability of the models to simulate aspects of the present climate, 

we compare the simulated precipitation to observational data and the simulated 
temperatures to reanalysis data. The observational data for precipitation are provided by 

the Climate Prediction Center (CPC) Merged Analysis of Precipitation (“CMAP”) [2]; 

we consider the data from 1979 through 1997. We obtain the reanalysis data for 
temperatures from the years 1979 to 1997 of the National Centers for Environmental 

Prediction Reanalysis-2 Project (NCEP2) [3]. We also consider the temperature 

reanalysis data from 1979 to 1993 provided by the European Center for Medium-Range 
Weather Forecast ERA15 Project [4]. Although the results we get from the comparison of 

the model temperatures to the two reanalysis temperatures are slightly different, the main 
conclusions are the same, and we choose to present only the results of the study 

performed with the NCEP2 reanalysis data. 

       For the purpose of analyzing the simulations of present climate and the response to 
doubled CO2 concentration predicted by the 15 CMIP models, we consider two 

geographical regions: The first region is located between latitudes 31 degrees N and 48 
degrees N and longitudes 114 degrees W and 125 degrees W; it includes most of the 

western United States as well as a small portion of the Pacific Ocean. Within this region 

we compare the seasonal cycles of spatially-averaged simulated temperature and 
precipitation to observations. We also compute responses to doubled CO2 concentration 

over this region. This region is too small, however, to meaningfully evaluate the ability of 
coarse-resolution models to simulate spatial patterns of climatic quantities. We therefore 

consider a second, larger region, which extends approximately from latitudes 24 degrees 

N to 51 degrees N and from longitudes 62 degrees W to 130 degrees W. This region 
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includes all the continental United States and part of Mexico. In this region we compare 

simulated to observed spatial patterns of temperature and precipitation. 
 

Previous Studies 
 
       Previous studies reported temperature and precipitation responses to increased 

atmospheric CO2 in some states in the western U.S., as predicted either by general 

circulation models (GCMs) or by a nested regional climate model (RCM) driven by a 
GCM. Although our goal in this paper is different from the goal of these studies, we 

examine if the results are consistent with each other.   

       Giorgi et al. (1994) discuss present-climate and doubled CO2 simulations of the 
continental United States, using the MM4 RCM nested within the NCAR CCM. For near-

surface temperatures, they find that both models have spatially-averaged monthly mean 
temperature responses to doubled CO2 concentration ranging from about 3K to 5K over 

the Southwestern U.S. and from about 2K to 6K over the Northwestern U.S. For 

precipitation, the spatially-averaged monthly mean response to doubled CO2 is almost 
always predicted to be positive over the Northwestern U.S., while it is almost always 

predicted to be negative from April to October over the Southwestern U.S. and positive 
the rest of the year. 

       Kim et al. (2002) simulated present and increased-CO2 climates in Western U.S. 

using an RCM nested within two scenarios from UKMO’s HadCM2 GCM. They find 
that for every season, temperature signals prediscted by the GCM and RCM are in ranges 

3 - 4K and 3 – 5 K, respectively, in most of the western U.S. As far as precipitation is 
concerned, they find that the GCM projects large winter and fall precipitation increases in 

the western U.S. and small increases or even decreases in the spring and summer. The 

downscaled spatially-averaged precipitation signal shows characteristics similar to the 
GCM signal. 

       Leung and Ghan (1999) simulated an increased-CO2 climate in Washington, Oregon, 
Idaho and Montana, using the PNNL RCM nested within the NCAR CCM3 GCM The 

GCM was forced with observed SSTs to simulate the present climate, and with SSTs 

from a simulation with the GFDL coupled model to simulate an increased GHG climate. 
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They find that for surface temperature, both the GCM and RCM “show warming between 

0 degree C and 4.5 degrees C throughout all seasons and over” all four states. In all four 
regions, the precipitation signals fluctuate from high positive values in some months to 

high negative values in other months. The RCM and the GCM both predict negative 
precipitation signals over all the states in a few months.  

       Snyder et al. (2002) used the RegCM2 RCM nested within the CCM3 GCM coupled 

to a slab ocean model to generate ensembles of climate scenarios under atmospheric 
conditions of 280 and 560 ppm CO2 for a domain centered over California. They found 

that although monthly results are noisy, the temperature response is positive over the 
whole region, every month. The precipitation response however, is negative in some 

months in certain regions. 

       The areas considered in these four studies do not perfectly match with the western 
U.S. region considered in our own study; the results that these studies report were 

partially obtained from RCMs, as opposed to our study which only analyzes GCM 

results, and the experimental conditions in these studies are all different from the 
conditions in which the data we analyze were obtained. However, since they all report the 

climate response to increased CO2 over the western U.S., we can still look at the 
consistency of our results with their general conclusions. 

       Despite the differences between the predicted responses to increased atmospheric 

CO2 over the western U.S. of the different studies, overall, the temperature response is 
found to be significantly positive over the whole region and in every season. The 

precipitation response is usually predicted to be large and positive in the winter, while in 
the summer it is usually smaller, negative at least over part of the domain and not 

significant. As we will see later, these general results are consistent with our findings, 

which are that the 15-model mean temperature response is significantly positive over the 
western U.S. We also find that the model-mean precipitation response is small and 

negative in summer / fall, larger and positive in winter, but never significantly different 
from zero. 

       Pan et al. (2001) examined simulations of precipitation in the continental U.S. 

performed with two different RCMs driven by reanalysis, and by simulations with the 
HadCAM2 GCM of the present climate and an increased greenhouse gas climate. They 
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quantified precipitation biases due to errors in the RCMs, errors in the GCM boundary 

conditions, and differences between the two RCMs, in different seasons. They found that 
many of these biases are largest in summer, possibly due to increased reliance on 

parameterizations in that season. They also found that, in summer, precipitation responses 
to increased greenhouse gases are everywhere less than precipitation biases, again 

possibly due to a predominance of convective precipitation in this season. 

       Kittel et al. (1998) examined regional biases and transient doubled CO2 sensitivities 
of nine coupled atmosphere-ocean models: the CSIRO MK2O, GFDL_R15_A, MPI-m, 

MPI-x, MRI1, NCAR-q, NCAR-r, HADCM2-s and HADCM2-t models. The focused on 
seven continental regions: Central North America, Southern Europe, Northern Europe, 

the Sahel, Southern Asia, Eastern Asia, and Australia. The models showed surface 

warming in all regions, with slightly stronger temperature sensitivity in winter. 
Precipitation changes were mostly in the range of – 20 % to 20 % of controls. “Across all 

models and regions, there was a slight trend towards increasing precipitation, with larger 

responses in winter (average change = 7 + 20 %) than in summer (2 + 11 %).”  
       Although none of the regions considered in this study correspond to the western 

U.S., the fact that over all these regions, the models all predict a significantly positive 
temperature response both in DJF and JJA, and the fact that over five regions out of 

seven, the range of model precipitation responses includes zero both in DJF and JJA are 

consistent with our results. Despite some large differences between their responses, the 
models seem to always predict a positive temperature response to increased CO2. In 

contrast, over many regions, models don’t agree on the sign of the precipitation response 
to increased CO2 concentration. 

       Covey et al. (2003) report results of control simulations and 1% per year increasing 

CO2 simulations performed by 18 CMIP models. They calculate the annual mean 
precipitation and temperature responses to increased CO2 concentration by subtracting 

the first 20-year means of the 80-year perturbed simulations from the last 20-year means 
of the same simulations. They calculate the all-model mean precipitation and temperature 

responses and normalize them by the respective standard deviation over the 18 models. 

They find that everywhere over the continental U.S., the normalized annual mean 
temperature response averaged over the 18 models is greater than one, while the 
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normalized annual mean precipitation response has an absolute value less than one. This 

result is consistent with what we find for the DJF and JJA precipitation and temperature 
responses over the U.S. 
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Results 
 

1. Simulation of present Climate 

1.1 Seasonal cycles of precipitation and temperature over the western U.S. 
 

       We are interested in how accurately the different CMIP models simulate 

precipitation and near-surface temperature over the United States. We first focus on the 
western U.S., where the seasonal cycles are strong. For each model, we compare the 

seasonal cycle of simulated climatological precipitation and near-surface temperature, 
spatially averaged over the western U.S., to the comparable values obtained respectively 

from observations and reanalysis.  

       All the models overpredict winter precipitation (Figure 1); in some of the models 
(BMRCb, GFDL_R15_a, GOALS, IPSL-CM2, HadCM2, and HadCM3), precipitation 

rates are more than 50% above the observations. Some models tend to overpredict 
precipitation over most of the year except in July, August and September. For most of 

these models, the simulated precipitation in autumn, winter and spring exceeds the 

observed precipitation by 0.3 mm/day to 1 mm/day, while in the summer, the simulated 
precipitation generally matches the observations. In three models (CCSR/NIES, 

ECHAM3/LSG and MRI1), however, simulated monthly-mean precipitation is generally 
within 0.5 mm/day above or below observations (Fig. 1). The climatological precipitation 

averaged over the 15 models (Fig. 2) confirms the previous conclusions that most models 

overpredict precipitation in this region, especially during winter. 
       To gain a feel for observational uncertainties in near-surface temperatures in the 

region of interest, in Figure 3a we show seasonal cycles of spatially-averaged near-
surface temperatures from six reanalysis or observational data sets. The different data sets 

differ by as much as 2 K in some months. Nonetheless, the some of the models have 

biases which are apparently outside the bounds of observational uncertainties. Several 
models (BMRCb, CCSR/NIES, ARPEGE/OPA2, IPSL-CM2 and MRI1) overestimate 

the near-surface temperatures in the summer by as much as 3 to 6 K (Figure 3). The same 

models also tend to overpredict the other seasons’ temperatures but generally by no more 
than 3 K. Other models (GFDL_R15_a, DOE PCM, CSM1.0, GOALS, GISS2, HadCM2 
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and HadCM3) underestimate the temperatures in winter and spring, and except for 

CSM1.0, they tend to overestimate the temperatures in the summer season, generally by 1 
to 3K. Thus, this second group of models overestimates the seasonal cycle in near-surface 

temperature in the western U.S. The GOALS model overestimates the July and August 
temperatures by 5K. Finally, 3 models (CGCM1, CSIRO Mk2, and ECHAM3/LSG) 

predict a seasonal cycle of temperature in good agreement with reanalysis. Their 

simulated monthly mean temperatures usually differ from the reanalysis temperatures by 
less than 2 K (Fig. 3). 

 
1.2  Precipitation and temperature spatial patterns in present climate over the 

continental United States 

 
       In this section, we assess how well the 15 CMIP models simulate the spatial patterns 

of present climate temperature and precipitation over the U.S. in DJF and JJA. 

       Figs. 4a and 5a show, respectively, the DJF and JJA observed precipitation in the 
U.S., averaged over 1979 through 1997. Figs. 4b and 5b show DJF and JJA precipitation, 

based on 19 years of output and averaged over all 15 models. And Figs. 4c and 5c show 
for DJF and JJA, respectively, the difference between the all-model mean precipitation 

(Figs. 4b and 5b) and the observed precipitation (Figs. 4a and 5a). Finally, Figs. 4d and 

5d show the difference between the all-model mean precipitation and the observed 
precipitation, normalized by observed interannual variability, for DJF and JJA, 

respectively. 
       The mean model simulates some of the main spatial patterns of precipitation 

relatively well in both DJF and JJA. However, in DJF, the models therefore overpredict 

precipitation in eastern Washington, eastern Oregon, Idaho, Montana, Wyoming, Utah 
and Nevada. The likely reason for that is that these regions are in the “rain-shadow” of 

mountain ranges whose maximum elevation is unrealistically low in these coarse-
resolution models. In addition, mean model fails to represent the region of high 

precipitation over the south-eastern U.S., while in JJA in Northeastern states are too wet. 

In JJA, Fig. 5c shows that the wet region in the Midwest is displaced westward; they also 
show that over Mexico, and over the Gulf of Mexico, JJA precipitation is incorrectly 
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represented. Relative to observed interannual variability, errors in model-mean simulated 

DJF precipitation are particularly large in the Northwest (Fig. 4d); in JJA these 
normalized errors are generally smaller than in DJF (Fig 5d). 

  Figs. 6a and 7a show, respectively, the DJF and JJA temperature over the U.S. 
from the NCEP2 reanalysis, averaged over 1979 through 1997. Figs 6b and 7b show the 

corresponding simulated DJF and JJA near-surface temperatures based on 19 years of 

output and averaged over all 15 models. Figs. 6c and 7c show for DJF and JJA, 
respectively, the difference between the all-model mean near-surface temperature and the 

NCEP2 reanalysis temperature. And Figs. 6d and 7d show for DJF and JJA, respectively, 
the root mean square (RMS) difference between the model-mean simulated temperature 

(averaged over 19 years) and NCEP2 temperatures (for 1979 through 1997). 

       As for precipitation, the main spatial patterns of temperature over the U.S. in DJF 
and JJA are overall successfully simulated by the 15 CMIP models. In DJF, models tend 

to underestimate the north-south gradient in temperature. In some locations in the 

Western U.S., these errors exceed interannual temperature variability. In JJA, the all-
model mean near-surface temperatures are too warm in most regions of the U.S. In the 

Western U.S., errors in the all-model mean near-surface temperatures (relative to 
reanalysis) greatly exceed interannual variability. Large RMS differences over certain 

regions where the all-model mean temperature is relatively close to reanalysis indicate a 

large inter-model temperature “spread” in these resgions. This is the case for example in 
JJA, over the north-eastern U.S. and south-eastern Canada. 

 To lend some sense of scale to the model errors, in Figs. 6e and 7e we show the 
error in all-model mean near-surface temperature (for DJF and JJA, respectively), 

normalized by observed interannual variability in near-surface temperature. The latter 

quantity here is defined to be the standard deviation over years of the seasonal-mean 
near-surface temperature. When normalized in this way, the all-model mean in DJF is 

smaller than that in JJA. 
 

1.3 RMS errors in the simulated precipitation and temperature over the United States 
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       In this section, we compare the different models based on the RMS errors of the 

simulated precipitation and temperature over the continental U.S., in DJF and JJA, with 
respect to observations or reanalysis. 

 
                            DJF                                                                        JJA 

rank model RMS error  rank model RMS error 
1 HadCM3 0.93  1 HadCM3 0.75 
2 DOE PCM 0.94  2 HadCM2 O.93 
3 CSM 1.0 0.97  3 CSIRO Mk2 1.02 
4 HadCM2 1.03  4 ARPEGE/OPA2 1.06 
5 CCSR/NIES 1.12  5 GOALS 1.12 
6 GISS2 1.15  6 ECHAM3/LSG 1.19 
7 CSIR0 Mk2 1.15  7 CSM 1.0 1.29 
8 ECHAM3/LSG 1.22  8 GFDL_R15_a 1.37 
9 ARPEGE/OPA2 1.28  9 BMRCb 1.38 

10 MRI1 1.29  10 GISS2 1.50 
11 GOALS 1.37  11 DOE PCM 1.55 
12 CGCM1 1.40  12 CCSR/NIES 1.57 
13 GFDL_R15_a 1.44  13 IPSL-CM2 1.75 
14 IPSL-CM2 1.66  14 MRI1 1.76 
15 BMRCb 1.70  15 CGCM1 1.88 

 

Tables 2 and 3: RMS errors of the precipitation over the U.S. in DJF and JJA 

respectively, calculated for each model with respect to observations 

 

       A comparison of Tables 1 through 5 suggests that there may be some relationship 
between horizontal spatial resolution in the AGCM component and ability to simulate 

precipitation and near-surface temperature. This is true of DJF precipitation and of near-
surface temperature in both DJF and JJA, but not of JJA precipitation. This is consistent 

with the results of Duffy et al. (2003) who showed that ability to simulate precipitation in 

the continental U.S. is  strongly resolution-dependent for DJF precipitation—which is 
dominated by the large-scale component—but has little resolution dependence for JJA 

precipitation, which is dominated by the convective component. That ability to simulate 
near-surface temperature should be resolution-dependent is not surprising, since the 

region in question has strong topographic variations.        

                     DJF                                                                      JJA 
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rank model RMS error  rank model RMS error 
1 DOE PCM 1.79  1 HadCM3 1.34 
2 CSM 1.0 1.85  2 CGCM1 1.58 
3 HadCM3 1.90  3 CSIRO Mk2 1.61 
4 CSIRO Mk2 1.92  4 HadCM2 1.85 
5 GFDL_R15_a 2.15  5 CSM 1.0 1.87 
6 ECHAM3/LSG 2.24  6 DOE PCM 1.95 
7 BMRCb 2.43  7 ARPEGE/OPA2 2.32 
8 CCSR/NIES 2.62  8 GISS2 2.40 
9 HadCM2 2.96  9 GFDL_R15_a 2.53 

10 CGCM1 3.07  10 ECHAM3/LSG 2.64 
11 MRI1 3.28  11 IPSL-CM2 2.80 
12 GISS2 3.31  12 CCSR/NIES 3.47 
13 ARPEGE/OPA2 3.38  13 BMRCb 3.81 
14 GOALS 3.58  14 GOALS 4.63 
15 IPSL-CM2 3.81  15 MRI1 5.22 

 

Tables 4 and 5: RMS errors of the temperature over the U.S. in DJF and JJA 

respectively, calculated for each model with respect to reanalysis 

 

       The HadCM3 model shows the third best agreement with reanalysis for temperature 
in DJF and has the best ability to simulate temperature in JJA and precipitation both in 

DJF and JJA over the U.S. The CSM 1.0 and HadCM2 models are both three times out of 
four among the five best models to predict present climate temperature or precipitation in 

DJF or JJA over the U.S. 

 

2. Response to doubled CO2 concentration 
 

       The seasonal cycle of spatially averaged regional temperature and precipitation 
responses were calculated for each model over the Western U.S. As shown by Fig. 8a, the 

precipitation response averaged over the 15 models is negative and very small from 

March to September when precipitation itself is light in this region. The relatively small 
inter-model standard deviation in summer precipitation shows that this is a result of small 

responses in individual models. In October and November, the precipitation response 
averaged over the models is larger, but still negative (about – 0.15 mm/day). In DJF, the 

model-averaged precipitation response is roughly + 0.25 mm/day, but the standard 
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deviation among the model responses is very large (0.75 mm/day), indicating a poor 

agreement of the models on the amplitude and even the sign of the regional precipitation 
response. Fig. 8b – in which the response is given as a percentage of the present day 

value – shows similar results; however, the model-averaged relative precipitation 
response and the associated inter-model variability are now larger in the summer / fall. 

The relative precipitation response averaged over the 15 models ranges from +10 % in 

February to -15 % in October. These two diagrams show that over the western U.S., there 
is a strong disagreement between the models as far as the precipitation response to 

doubled CO2 is concerned. The models tend to predict a small negative response during 
the summer / fall when precipitation is low and a larger positive response in winter when 

precipitation is high, but the inter-model variability is large all year long. 

       Fig. 9 shows the seasonal cycle of temperature response over the western U.S., 
averaged over the 15 models. The model-averaged temperature response is positive in all 

the months; it is higher during the warm season (2.5 K – 2.8 K), from June to October 

than during the cold season (1.8 K – 2.4 K), from November to May. Nevertheless, the 
inter model variability, represented by the standard deviation over the model responses is 

quite significant in each month (0.5 K - 1 K), compared to the amplitude of the response 
itself. This indicates that the range of predicted values is quite large; however, this range 

is not large enough to encompass zero, and all models predict a positive response in every 

month. The monthly-mean temperature responses for individual models range from 1.5 K 
to 3 K during the winter and from 1.5 K to almost 5 K during the summer. It should be 

noted here that these coarse-resolution models may underestimate DJF temperature 
responses due to underestimating the magnitude of a snow-albedo feedback. This occurs 

because the extent of snow cover in the present climate is typically underestimated due to 

maximum elevations being unrealistically low. 
       Figs. 10a and 10b show the ratio of the all-model mean precipitation response to the 

standard deviation of the precipitation response over the 15 models, respectively in DJF 
and JJA over the continental U.S. This ratio is analogous to a signal to noise ratio, and 

measures the consistency of the response among the models. As one might expect after 

looking at Fig. 8, in JJA, the ratio is less than 1 everywhere in the U.S. This means that 
when all the models are considered, the predicted JJA precipitation response is 
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everywhere consistent with zero. In DJF, the all-model mean precipitation response is 

greater than the inter-model standard deviation only in some regions in the north of the 
continental U.S. / south of Canada and in one area of Mexico, where the amplitude of the 

response gets larger. This confirms that, over the U.S. at least, the predicted precipitation 
response to a doubling of CO2 concentration is generally consistent with zero. The fact 

that the ratio is smaller in JJA than in DJF may reflect the fact that JJA precipitation 

typically is produced predominately by convection parameterization, whereas DJF 
precipitation is predominately large-scale. The different approaches to parameterizing 

convection in different models might lead to the tendency for the models to predict 
different JJA precipitation responses. 

      Another sort of signal to noise ratio can be defined as the ratio of simulated response 

to increased CO2 divided by model error. In Figs 11a and 11b, we show, for DJF and JJA, 
respectively, this ratio for all-model mean near-surface temperature. In most regions of 

the U.S., the near-surface temperature response by this measure is highly significant. By 

contrast, for precipitation the same ratio is <1 in most locations, especially in DJF (Figs 
11c and 11d). 

       Figs. 12 and 13 show the ratio of the all-model mean temperature response to the 
standard deviation of the temperature response over the 15 models, respectively in DJF 

and JJA over the U.S. As expected, both in DJF and JJA, the model-averaged temperature 

response is now greater than the inter-model standard deviation of that same response 
(ratio > 1) everywhere in the continental U.S. This shows that the models are consistent 

in predicting a positive temperature response everywhere in the U.S. 
       The results reported in this section are consistent with the general conclusions of the 

studies discussed in the introduction. Giorgi et al. (1994), Kim et al. (2002), Leung et al. 

(1999), and Snyder et al. (2002), who looked at the temperature and precipitation 
responses to increased CO2 concentration over areas including partially or entirely the 

western U.S., found that over the western United States, the temperature response is 
significantly positive everywhere and in every month. They also generally found a small 

and negative precipitation response in summer and a larger positive response in winter, 

the statistical significance of the precipitation response being usually small. Kitter et al. 
(1998), who looked at the precipitation and temperature responses to doubled CO2 
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concentration of nine models over seven subcontinental regions of the world, found that 

models agree on the positive temperature response but don’t agree on the sign of the 
precipitation response over most regions. 

      
 

3. Relationship between ability to simulate present climate and response 

to doubled CO2 concentration 
 

       Different models simulate the present climate with different accuracies, and also 
predict different climate responses to a doubling of CO2 concentration. The degree of 

agreement between a model’s simulated present climate and observations is the main 

criterion on which models are evaluated. So one might wonder if models that simulate the 
present climate relatively well predict a different climate response to increased CO2 

concentration than models that are not as skillful. As discussed above, if this were true it 
would allow us to make refined estimates of the predicted climate responses to increased 

CO2, and/or of the inter-model spread in those responses. In this section, we investigate 

possible relationships between the skill with which models simulate aspects of the present 
climate and their predicted response to a doubling of CO2 concentration. We search for 

relationships between temperature or precipitation responses to increased CO2 and spatio-
temporal RMS model errors. The RMS errors are computed using: 
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where: 

- Vmod,N is a simulated monthly mean temperature or precipitation over a specific grid 
cell of the area considered 

- Vobs,N is a monthly mean temperature or precipitation over a specific grid cell of the 
area considered, obtained respectively from reanalysis or observations 

- N is the number of months (12) times the number of grid cells in the area considered 

(the summing is over all the grid cells and all the months) 
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- wN is the area weight of a specific grid cell 
 

       For precipitation, three diagrams were plotted using the simulations of the 15 CMIP 
models. Fig. 14 represents the spatial and annual mean precipitation response versus the 

RMS error calculated over each grid cell and each month of the year, with respect to 
observations. Here the responses and RMS errors were calculated for latitudes 60 degrees 

S to 60 degrees N; we excluded the polar regions because these regions may have large 

errors but may not significantly influence the climate at lower latitudes. Fig. 15 
represents the regional precipitation response over the western U.S., averaged over DJF, 

versus the same RMS error calculated over each grid cell between latitudes 60S and 60N, 

each month of the year. Fig. 16 represents the western U.S. precipitation response in DJF 
versus the RMS error calculated over a north-eastern Pacific region including the western 

U.S., each month of the year. This region is located between latitudes 0 degrees N and 60 
degrees N, and longitudes 180 degrees W and 110 degrees W; it corresponds to the north-

eastern Pacific where the weather patterns of the western U.S. are typically formed. 

These three diagrams do not show any obvious relationship between precipitation 
response and RMS error. The range of precipitation responses of the models with the 

smallest RMS errors also does not differ very much from the range of responses of the 
models with larger RMS errors. 

       To make this analysis more quantitative, we separated the models into two groups: 

the seven models with the smallest precipitation RMS errors in a specific region, and the 
seven models with the largest RMS errors in the same region. We compared model-mean 

responses, and the inter-model standard deviation of responses, between these two groups 
of models. Finally, we performed a 2-tailed t-test in each case between the precipitation 

responses of the models with the smallest RMS errors and the responses of the models 

with the largest RMS errors. The probability value obtained from the t-test on two sets of 
responses corresponds to the probability that the means of these two sets of values would 

be as different if they were randomly picked from the same distribution. Thus, a high 
probability value indicates that the mean response of the models with the smallest RMS 

errors cannot really be distinguished from the mean response of the models with the 

largest RMS errors. On the other hand, a low probability value (typically below 10 %) 
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indicates that the mean response of the models with small errors is significantly different 

from the mean response of the models with large errors. The model mean responses, 
standard deviations, probability values and t values are reported in Table 6. 

 

 

Mean response of 7 
models with 

smallest RMS errors 
(mm/day) 

Mean response of 7 
models with largest 

RMS errors 
(mm/day) 

Probability 
(%) T value Figure 

Annual mean response 
over 60S to 60N, RMS 
error calculated over 60S 
to 60N 

0.074 + 0.033 0.050 + 0.034 20 1.36 14 

DJF response over 
western U.S., RMS error 
calculated over 60S to 
60N 

0.021 + 0.465 0.480 + 0.348 7 -1.98 15 

DJF response over 
western U.S., RMS error 
calculated over North-
Eastern Pacific region 

0.221 + 0.463 0.317 + 0.472 71 -0.38 16 

 

Table 6: Smallest RMS error model mean and largest RMS error model mean 

precipitation responses, and standard deviations of the responses over the different 

models. Probability values and t-values from the t-tests performed between the 

precipitation responses of the models with smallest RMS errors and the precipitation 

responses of the models with largest RMS errors  

 
 

       In each case, the inter-model variability (characterized by the standard deviation of 
the response over the different models) is comparable for the two groups of models. The 

probability value of 71 % in Table 6 confirms the absence of obvious relationship 

between the ability of the models to simulate the present climate precipitation over the 
north-eastern Pacific region and the precipitation response over the western U.S. in DJF. 

The low probability values given by the t-tests performed on the groups of responses of 

the models with low and high RMS error over the tropical and mid latitudes (60S to 60N) 
seem to indicate a relationship between the RMS error calculated over the region between 

latitudes 60 degrees S and 60 degrees N and the precipitation response over that same 
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region or over the western U.S. in DJF. Table 6, however, shows that the mean 

precipitation response for the two groups of models, both averaged over the region 
between latitudes 60S and 60N, are very close to each other (0.05 mm/day versus 0.074 

mm/day while the inter-model variability is about 0.03 mm/day). And as far as the 
response over the western U.S. in DJF is concerned, the divergence between the models 

of small RMS error over the tropical to mid latitudes is such that no conclusion on the 

amplitude or even the sign of the precipitation response is possible. Therefore, for 
precipitation, we find that no matter whether we look at the regional response or the 

global response and no matter whether we consider the regional or the global simulation 
of present climate, it is not possible to narrow the range of predicted responses to doubled 

CO2 concentration, by only considering the models that are best able to simulate 

precipitation in the present climate. 
       For temperature, a similar analysis (Figs. 17, 18, and 19) shows that neither the 

global annual mean temperature response nor the western U.S. regional response in DJF 

exhibit a relationship with the RMS error calculated over the region between latitudes 60 
degrees S to 60 degrees N, over each month. However, the western U.S. response in DJF 

seems to show a relationship with the RMS error calculated over the north-eastern Pacific 
region (Fig. 19). This suggests that models with a superior ability to simulate surface 

temperatures in the region where weather systems of the western U.S. originate predict 

larger temperature responses to increased CO2 in the western U.S. To see if a similar 
relationship holds for surface temperatures over Europe, we show a diagram of the DJF 

surface temperature response over Europe (latitudes between 35 degrees N and 60 
degrees N, and longitudes between 10 degrees W and 30 degrees E) versus the RMS error 

calculated over the north-eastern Atlantic region (latitudes between 30 degrees N and 70 

degrees N, and longitudes between 50 degrees W and 40 degrees E), over each month of 
the year. This shows a similar though noisier relation (Fig. 20). In both cases, the models 

with a smaller RMS error tend to predict a higher temperature response than the models 
with a larger RMS error in simulated surface temperatures. The significance of these 

relationships may be partially obscured by observational errors in ocean regions, which 

are typically larger than over land. 
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       As with precipitation, temperature responses averaged over the seven models with 

the smallest RMS errors over the north-eastern Pacific region, the Northern Atlantic 
region, or the region between latitudes 60S and 60N and averaged over the seven models 

with the largest RMS errors, were calculated for the western U.S. or Europe in DJF, or 
annually for tropical to mid latitudes. The standard deviations of the temperature 

response over these two groups of seven models were calculated in each case as well. T-

tests on the temperature responses were performed between the groups of models with 
the smallest RMS errors and the groups of models with the largest RMS errors. The 

results are reported in Table 7. 
 

 

Mean response of 
7 models with 
smallest RMS 

errors (mm/day) 

Mean response of 
7 models with 
largest RMS 

errors (mm/day) 

Probability 
(%) T value Figure 

Annual mean response 
over 60S to 60N, RMS 
error calculated over 60S 
to 60N 

1.574 + 0.269 1.656 + 0.251 87 -0.16 17 

DJF response over 
western U.S., RMS error 
calculated over 60S to 
60N 

2.136 + 0.228 2.156 + 0.233 57 -0.58 18 

DJF response over 
western U.S., RMS error 
calculated over North-
Eastern Pacific region 

2.346 + 0.324 2.039 + 0.237 7 2.02 19 

DJF response over 
Europe, RMS error 
calculated over Northern 
Atlantic region 

2.054 + 0.270 1.861 + 0.231 18 1.43 20 

 
Table 7: Smallest RMS error model mean and largest RMS error model mean 

temperature responses, and standard deviations of the responses over the different 

models. Probability values and t-values from the t-tests performed between the 

temperature responses of the models with smallest RMS errors and the temperature 

responses of the models with largest RMS errors 
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       Table 7 confirms the results obtained from Figs. 17 through 20: The models with the 

smallest RMS errors over the region between latitudes 60 degrees S and 60 degrees N 
have mean temperature responses over the western U.S. in DJF and over latitudes 60S to 

60N and ranges of temperature responses very similar to the responses and ranges of 
responses of the models with the largest RMS errors. The high probability values (87 % 

and 57 %) obtained from the corresponding t-tests also show that in each case, the two 

groups of models predict similar mean responses. On the other hand, the t-test performed 
between the temperature responses of the models with the smallest RMS errors over the 

north-eastern Pacific region and the responses of the models with the largest RMS errors 
over that same region gives a small probability value (7 %). As suggested by Fig. 19, this 

shows that on average, the seven models with the smallest RMS error over the north-

eastern Pacific region predict a significantly higher DJF temperature response over the 
western U.S. than the seven models with the biggest RMS error (2.35 K instead of 2.04 

K). A probability value of 18 % for the t-test performed between the two sets of seven 

responses over Europe confirms that the models with the smallest RMS errors over the 
Northern Atlantic region also predict a significantly higher temperature response over 

Europe than the models with the largest RMS errors (2.05 K instead of 1.86 K). The 
higher probability value for Europe/Atlantic indicates that the relationship between RMS 

error and temperature response is not as strong as for the western U.S./Pacific (although, 

again, the significance of both of these relationships might be partly obscured by 
observational errors.) 

 
 

Conclusion 
 

       The analysis of the present climate simulations in 15 global ocean-atmosphere-sea 
ice models shows some common features among the different models. The models tend 

to overestimate precipitation over the western U.S., especially in winter. Regarding the 
seasonal cycle of temperature, averaged over the western U.S., the models can be divided 

in three groups: those that overestimate the temperatures, especially in the summer, those 

that underestimate the temperatures in the winter / spring and generally overestimate the 
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temperatures in the summer, and finally those that agree well with reanalysis. The mean 

model generally manages to reproduce well the main spatial patterns of precipitation and 
temperature over the continental United States, and the misrepresentations are again often 

common to most models. For example, in DJF, the models tend to overestimate the 
winter precipitation in eastern Washington, eastern Oregon, Idaho, etc.; in JJA, they also 

displace westward the region of high precipitation in the Midwest. The overestimation of 

winter temperature in the north-eastern and north-central regions of the U.S. seems 
common to most models too; however, for temperature, there is a larger heterogeneity 

between the different models. 
       The analysis performed on the temperature and precipitation responses to a doubling 

of CO2 concentration, over the western U.S. region, shows that there is no consensus 

between the different models for the amplitude and even the sign of the precipitation 
response. The temperature response, whose model-averaged amplitude ranges from 1.8 K 

to 2.8 K over the different months, presents a large inter-model variability. Nevertheless, 

this temperature response is consistently positive in the western U.S. 
       The 15 models studied have different abilities to simulate the present climate; they 

also have different temperature and precipitation responses to a doubling of CO2 
atmospheric concentrations. Although some relationships were found between the ability 

of the models to simulate accurately the present climate’s precipitation (represented by 

the RMS errors) and the precipitation response to doubled CO2 concentration, 
considering only the models that agree best with precipitation observations does not give 

a narrower range of precipitation responses. For temperature, some relationships seem to 
exist between the response over Europe or the western U.S. in DJF and the ability of the 

models to simulate the temperature respectively over the northern Atlantic or the north-

eastern Pacific region. In both cases, the more accurate models predict a larger 
temperature response. 

       This result has important implications. It means that it is difficult to narrow the range 
of predicted responses to increased CO2 concentration by just considering the models that 

have the best ability to simulate the present climate. Also, climate models are typically 

evaluated based on how well they reproduce the present climate; however, for 
precipitation, and to some extent for temperature as well, “better” models do not give a 
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different prediction of the response to increased CO2 concentration than “worse” models. 

This would seem to undercut the common assumption that models that are better at 
simulating the present climate will give better predictions of future climate. This 

conclusion, however, only applies among models of already high quality. It is obvious 
that beyond a certain level, models of poor quality will not be able to predict a response 

in the best models’ range of responses other than by chance. Also, we only compared the 

model results to one set of observational data for precipitation and to two sets of 
reanalysis data for temperature. A study based on other sets of reference data might come 

to different conclusions as observations and reanalysis data sometimes largely differ from 
one another. And finally, our study was limited to temperature and precipitation over a 

few regions and we cannot generalize our conclusions to other variables or other regions 

of the world. 
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Tables 
 

Model 
 

Institution/Country 

Control Run 

CO2 [ppmv] 

Atmospheric 

Resolution 

Ocean 

Resolution 

GFDL_R15_a GFDL/USA 360 
R15 (4.5 x 7.5) 

L9 

4.5 x 3.7 

L12 

GOALS LASG/China 345 
R15 (4.5 x 7.5) 

L9 
4.0 x 5.0 

L20 
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ECHAM3/LSG ECMWF/UK 345 
T21 (5.6 x 5.6) 

L19 

4.0 x 4.0 

L11 

CCSR/NIES Univ. of Tokyo/Japan 345 
T21 (5.6 x 5.6) 

L20 

2.8 x 2.8 

L17 

GISS2 NASA-GISSS/USA 315 4.0 x 5.0 L9 
4.0 x 5.0 

L13 

MRI1 
Meteorological Res. 

Inst./Japan 
345 4.0 x 5.0 L15 

2.0 x 2.5 

L21 

IPSL-CM2  IPSL/France 320 5.6 x 3.8 L15 
2.0 x 2.0 

L31 

BMRCb      BMRC/Australia 330 
R21 (3.2 x 5.6) 

L17 
3.2 x 5.6 

L12 

CSIRO Mk2  CSIRO/Australia 330 
R21 (3.2 x 5.6) 

L9 
3.2 x 5.6 

L21 

ARPEGE/OPA2    CERFACS/France 353 
T31 (3.9 x 3.9) 

L19 

2.0 x 2.0 

L31 

CGCM1 CCCMA/Canada 330 
T32 (3.8 x 3.8) 

L10 

1.8 x 1.8 

L29 

HadCM3 UKMO/UK 289.6 2.5 x 3.75 L19 
1.25 x 1.25 

L20 

HadCM2 UKMO/UK 322.6 2.5 x 3.75 L19 
2.5 x 3.75 

L20 

CSM1.0 NCAR/USA 355 
T42 (2.8 x 2.8) 

L18 

2.0 x 2.4 

L45 

DOE PCM NCAR 355 
T42 (2.8 x 2.8) 

L18 
0.67 x 0.67 

L32 

 
Table 1: List of the 15 CMIP models with their control run CO2 concentration, 

atmospheric resolution and ocean resolution. Models are listed in order of number of 

horizontal grid cells in the atmospheric component. 
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DJF                                                                        JJA 

rank model RMS error  rank model RMS error 
1 HadCM3 0.93  1 HadCM3 0.75 
2 DOE PCM 0.94  2 HadCM2 O.93 
3 CSM 1.0 0.97  3 CSIRO Mk2 1.02 
4 HadCM2 1.03  4 ARPEGE/OPA2 1.06 
5 CCSR/NIES 1.12  5 GOALS 1.12 
6 GISS2 1.15  6 ECHAM3/LSG 1.19 
7 CSIR0 Mk2 1.15  7 CSM 1.0 1.29 
8 ECHAM3/LSG 1.22  8 GFDL_R15_a 1.37 
9 ARPEGE/OPA2 1.28  9 BMRCb 1.38 

10 MRI1 1.29  10 GISS2 1.50 
11 GOALS 1.37  11 DOE PCM 1.55 
12 CGCM1 1.40  12 CCSR/NIES 1.57 
13 GFDL_R15_a 1.44  13 IPSL-CM2 1.75 
14 IPSL-CM2 1.66  14 MRI1 1.76 
15 BMRCb 1.70  15 CGCM1 1.88 

 
Tables 2 and 3: RMS errors of the precipitation over the U.S. in DJF and JJA 

respectively, calculated for each model with respect to observations. 

 

DJF                                                                      JJA 

rank model RMS error  rank model RMS error 
1 DOE PCM 1.79  1 HadCM3 1.34 
2 CSM 1.0 1.85  2 CGCM1 1.58 
3 HadCM3 1.90  3 CSIRO Mk2 1.61 
4 CSIRO Mk2 1.92  4 HadCM2 1.85 
5 GFDL_R15_a 2.15  5 CSM 1.0 1.87 
6 ECHAM3/LSG 2.24  6 DOE PCM 1.95 
7 BMRCb 2.43  7 ARPEGE/OPA2 2.32 
8 CCSR/NIES 2.62  8 GISS2 2.40 
9 HadCM2 2.96  9 GFDL_R15_a 2.53 

10 CGCM1 3.07  10 ECHAM3/LSG 2.64 
11 MRI1 3.28  11 IPSL-CM2 2.80 
12 GISS2 3.31  12 CCSR/NIES 3.47 
13 ARPEGE/OPA2 3.38  13 BMRCb 3.81 
14 GOALS 3.58  14 GOALS 4.63 
15 IPSL-CM2 3.81  15 MRI1 5.22 
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Tables 4 and 5: RMS errors of the temperature over the U.S. in DJF and JJA 

respectively, calculated for each model with respect to reanalysis. 

 

 

Mean response of 7 
models with 

smallest RMS errors 
(mm/day) 

Mean response of 7 
models with largest 

RMS errors 
(mm/day) 

Probability 
(%) T value Figure 

Annual mean response 
over 60S to 60N, RMS 
error calculated over 60S 
to 60N 

0.074 + 0.033 0.050 + 0.034 20 1.36 14 

DJF response over 
western U.S., RMS error 
calculated over 60S to 
60N 

0.021 + 0.465 0.480 + 0.348 7 -1.98 15 

DJF response over 
western U.S., RMS error 
calculated over North-
Eastern Pacific region 

0.221 + 0.463 0.317 + 0.472 71 -0.38 16 

 

Table 6: Smallest RMS error model mean and largest RMS error model mean 

precipitation responses, and standard deviations of the responses over the different 

models. Probability values and t-values from the t-tests performed between the 

precipitation responses of the models with smallest RMS errors and the precipitation 

responses of the models with largest RMS errors. 

 

 

Mean response of 
7 models with 
smallest RMS 

errors (mm/day) 

Mean response of 
7 models with 
largest RMS 

errors (mm/day) 

Probability 
(%) T value Figure 

Annual mean response 
over 60S to 60N, RMS 
error calculated over 60S 
to 60N 

1.574 + 0.269 1.656 + 0.251 87 -0.16 17 

DJF response over 
western U.S., RMS error 
calculated over 60S to 
60N 

2.136 + 0.228 2.156 + 0.233 57 -0.58 18 

DJF response over 
western U.S., RMS error 
calculated over North-
Eastern Pacific region 

2.346 + 0.324 2.039 + 0.237 7 2.02 19 
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DJF response over 
Europe, RMS error 
calculated over Northern 
Atlantic region 

2.054 + 0.270 1.861 + 0.231 18 1.43 20 

 

Table 7: Smallest RMS error model mean and largest RMS error model mean 

temperature responses, and standard deviations of the responses over the different 

models. Probability values and t-values from the t-tests performed between the 

temperature responses of the models with smallest RMS errors and the temperature 

responses of the models with largest RMS errors 

 
 

Figure Captions 
 

Fig 1: Seasonal cycles of present climate precipitation over the western U.S., predicted by 
the 15 CMIP models (red) and compared to the CMAP observations [2] (green). The 

error bars extend one standard deviation (calculated over the individual years considered) 

on either side of the monthly means. 
 

Fig. 2: Seasonal cycle of all-model mean present climate precipitation over the western 
U.S. (in red), compared to the CMAP observations [2] (in green). The error bars extend 

one standard deviation (calculated over the 15 models) on either side of the monthly 

means. 
 

Figure 3a: Comparison of near-surface temperatures in the Western U.S., in several 
reanalysis data sets (NCEP, NCEP2, NASA, ECMWF) and two observational data sets 

(UW and VEMAP). 

 
Fig. 3b: Seasonal cycles of present climate temperature over the western U.S., predicted 

by the 15 CMIP models (red) and compared to the NCEP2 reanalysis [3] (yellow). The 
error bars extend one standard deviation (calculated over the individual years considered) 

on either side of the monthly means. 
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Fig. 4a: Present climate precipitation observations over the United States in DJF 
 

Fig. 4b: All model mean present climate precipitation over the United States in DJF 
 

Fig. 4c: All model mean present climate DJF precipitation minus observed DJF 

precipitation 
 
Fig. 4d: For DJF precipitation, all-model mean minus observed precipitation, divided by 
observed interannual variability. 
 

Fig. 5a: Same as Figure 4a, for JJA 

 
Fig. 5b: Same as Figure 4b, for JJA 

 

Fig. 5c: Same as Figure 4c, for JJA 
 

Fig 5d: Same as Figure 4d, for JJA 
 

Fig. 6a: Present climate temperature over the United States in DJF, given by the NCEP2 

reanalysis 
 

Fig. 6b: All model mean present climate temperature over the United States in DJF 
 

Fig. 6c: All model mean present climate DJF temperature minus NCEP2 reanalysis DJF 

temperature 
 

Fig. 6d: Root mean square difference between model and NCEP2 reanalysis DJF present 
climate temperature, calculated over the 15 CMIP models  
 
Fig. 6e: For DJF near-surface temperature: all model mean minus NCEP2 reanalysis, 
divided by observed interannual variability. 
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Fig. 7a: Same as Figure 6a, for JJA 
 

Fig. 7b: Same as Figure 6b, for JJA 
 

Fig. 7c: Same as Fig. 6c, for JJA 

 
Fig. 7d: Same as Fig. 6d, for JJA  

 
Fig. 7e: Same as Fig. 6e, for JJA  

 

Figs. 8a and 8b: Seasonal cycle of the precipitation response to doubled CO2 
concentration over the western U.S., averaged over the 15 CMIP models, and standard 

deviation of the response over the different models. Top: response in mm/day. Bottom: 

response as a fraction of monthly present-day precipitation 
 

Fig 9: Same as Fig. 8a for the near-surface temperature response 
 

Fig 10a: Ratio of the all-model mean DJF precipitation response (to doubled CO2 

atmospheric concentration) to the standard deviation of the response over the 15 models 
  

Fig 10b: Same as Fig 10, for the JJA precipitation response. 
 

Fig. 11a: All-model mean response in near-surface temperature to increased CO2, divided 

by error in all-model mean near-surface temperature, for DJF. 
 

Fig. 11b: Same as Fig. 11a, for JJA. 
 

Fig. 11c: All-model mean response in precipitation to increased CO2, divided by error in 

all-model mean precipitation, for DJF. 
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Fig. 11d: Same as Fig. 11c, for JJA. 

 
Fig 12: Same as Fig 10, for the DJF near-surface temperature response 

 
Fig 13: Same as Fig 10, for the JJA near-surface temperature response. 

 

Fig. 14: Annual mean precipitation response to doubled CO2 atmospheric concentration, 
over latitudes 60S to 60N versus RMS error calculated over the same region, over each 

month of the year 
 

Fig. 15: Precipitation response to doubled CO2 atmospheric concentration, over the 

western U.S. in DJF versus RMS error calculated over latitudes 60S to 60N, over each 
month of the year 

    

Fig. 16: Precipitation response to doubled CO2 atmospheric concentration, over the 
western U.S. in DJF versus RMS error calculated over the North-Eastern Pacific region, 

over each month of the year 
 

Fig. 17: Response of annual mean near-surface temperature to doubled CO2 atmospheric 

concentration, over latitudes 60S to 60N versus RMS error calculated over the same 
region, over each month of the year 

 
Fig. 18: Response of near-surface temperature to doubled CO2 atmospheric 

concentration, over the western U.S. in DJF versus RMS error calculated over latitudes 

60S to 60N, over each month of the year 
    

Fig. 19: Temperature response to doubled CO2 atmospheric concentration, over the 
western U.S. in DJF versus RMS error calculated over the North-Eastern Pacific region, 

over each month of the year. 
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Fig. 20: Temperature response to doubled CO2 atmospheric concentration, over Europe in 

DJF versus RMS error calculated over the Northern Atlantic region, over each month of 
the year 
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Fig 1: Seasonal cycles of present climate precipitation over the western U.S., predicted 
by the 15 CMIP models (red) and compared to the CMAP observations [2] (green). The 

error bars extend one standard deviation (calculated over the individual years 
considered) on either side of the monthly means. 
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Fig. 2: Seasonal cycle of all-model mean present climate precipitation over the western 
U.S. (in red), compared to the CMAP observations [2] (in green). The error bars extend 

one standard deviation (calculated over the 15 models) on either side of the monthly 
means. 
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Figure 3a: Comparison of near-surface temperatures in the Western U.S., in several 
reanalysis data sets (NCEP, NCEP2, NASA, ECMWF) and two observational data sets 
(UW and VEMAP). 
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Fig. 3b: Seasonal cycles of present climate temperature over the western U.S., predicted 
by the 15 CMIP models (red) and compared to the NCEP2 reanalysis [3] (yellow). The 

error bars extend one standard deviation (calculated over the individual years 
considered) on either side of the monthly means. 
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Fig. 4a: Present climate precipitation observations over the United States in DJF 

 

 
Fig. 4b: All model mean present climate precipitation over the United States in DJF 

 

 
 

Fig. 4c: All model mean present climate DJF precipitation minus observed DJF 
precipitation 



39 

 

Fig. 4d: For DJF precipitation, all-model mean minus observed precipitation, divided by 
observed interannual variability.
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Fig. 5a: Same as Figure 4a, for JJA 

 

 
Fig. 5b: Same as Figure 4b, for JJA 

 

 
Fig. 5c: Same as Figure 4c, for JJA 
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Fig. 5d: Same as Figure 4d, for JJA 
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Fig. 6a: Present climate temperature over the United States in DJF, given by the NCEP2 
reanalysis 

 
 
 

 
 

Fig. 6b: All model mean present climate near-surface temperature over the United States 
in DJF 
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Fig. 6c: All model mean present climate DJF temperature minus NCEP2 reanalysis DJF 

temperature 
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Fig. 6d: Root mean square difference between model and NCEP2 reanalysis DJF present 
climate temperature, calculated over the 15 CMIP models  

 
Fig. 6e: For DJF near-surface temperature: all model mean minus NCEP2 reanalysis, 

divided by observed  interannual variability.
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Fig. 7a: Same as Figure 6a, for JJA 
 
 
 

 
 

Fig. 7b: Same as Figure 6b, for JJA 
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Fig. 7c: Same as Fig. 6c, for JJA 

 
 

Fig. 7d: Same as Fig. 6d, for JJA  
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Fig. 7e: Same as Fig. 6e, for JJA 
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Figs. 8a and 8b: Seasonal cycle of the precipitation response to doubled CO2 
concentration over the western U.S., averaged over the 15 CMIP models, and standard 
deviation of the response over the different models. Top: response in mm/day. Bottom: 
response as a fraction of monthly present-day precipitation
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Fig 9: Same as Fig. 8a for the temperature response 
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Fig 10a: Ratio of the all-model mean DJF precipitation response (to doubled 
atmospheric CO2 concentration) to the standard deviation of the response over the 15 
models 
 
 

  
 

Fig 10b: Same as Fig 10a, for the JJA precipitation response. 
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Fig. 11a: All-model mean response in near-surface temperature to increased C02, 

divided by error in all-model mean near-surface temperature, for DJF. 

 
Fig. 11b: Same as Fig. 11a, for JJA. 
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Fig. 11c: All-model mean response in precipitation to increased CO2, divided by error in 
all-model mean precipitation, for DJF. 

 
Fig. 11d: Same as Fig. 11c, only for JJA
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Fig 12: Same as Fig 10, for the DJF near-surface temperature response 

 
 

 
 

Fig 13: Same as Fig 10, for the JJA near-surface temperature response. 
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Fig. 14: Annual mean precipitation response to doubled CO2 atmospheric concentration, 
over latitudes 60S to 60N versus RMS error calculated over the same region, over each 

month of the year. 
 

    
 

Fig. 15: Precipitation response to doubled CO2 atmospheric concentration, over the 
western U.S. in DJF versus RMS error calculated over latitudes 60S to 60N, over each 

month of the year 
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Fig. 16: Precipitation response to doubled CO2 atmospheric concentration, over the 
western U.S. in DJF versus RMS error calculated over the North-Eastern Pacific region, 

over each month of the year 
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Fig. 17: Annual mean temperature response to doubled CO2 atmospheric concentration, 
over latitudes 60S to 60N versus RMS error calculated over the same region, over each 

month of the year 
 
 

 
 

Fig. 18: Temperature response to doubled CO2 atmospheric concentration, over the 
western U.S. in DJF versus RMS error calculated over latitudes 60S to 60N, over each 

month of the year 
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Fig. 19: Temperature response to doubled CO2 atmospheric concentration, over the 
western U.S. in DJF versus RMS error calculated over the North-Eastern Pacific region, 

over each month of the year 
 
 

 
 

Fig. 20: Temperature response to doubled CO2 atmospheric concentration, over Europe 
in DJF versus RMS error calculated over the Northern Atlantic region, over each month 

of the year 



 


